Abnormality-aware multimodal learning for WSI classification.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Thao Bich Dang, Thao M Dang, Jean Gao, Yuzhi Guo, Junzhou Huang, Hehuan Ma, Saiyang Na, Qifeng Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 617.412 +Heart

Thông tin xuất bản: Switzerland : Frontiers in medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 697750

Whole slide images (WSIs) play a vital role in cancer diagnosis and prognosis. However, their gigapixel resolution, lack of pixel-level annotations, and reliance on unimodal visual data present challenges for accurate and efficient computational analysis. Existing methods typically divide WSIs into thousands of patches, which increases computational demands and makes it challenging to effectively focus on diagnostically relevant regions. Furthermore, these methods frequently rely on feature extractors pretrained on natural images, which are not optimized for pathology tasks, and overlook multimodal data sources such as cellular and textual information that can provide critical insights. To address these limitations, we propose the
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH