Development of multiparametric bioprinting method for generation of 3D printed cell-laden structures.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Stella Alimperti, Micaila Curtis, Leanne Friedrich, Yoontae Kim, Sophie Lipshutz

Ngôn ngữ: eng

Ký hiệu phân loại: 785.13 *Trios

Thông tin xuất bản: United States : Biotechnology progress , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 698388

The organ transplantation field requires new approaches for replacing and regenerating tissues due to the lack of adequate transplant methods. Three-dimensional (3D) extrusion-based bioprinting is a rapid prototyping approach that can engineer 3D  scaffolds for tissue regeneration applications. In this process, 3D printed cell-based constructs, consisting of biomaterials, growth factors, and cells, are formed by the extrusion of bioinks from nozzles. However, extrusion applies shear stresses to cells, often leading to cellular damage or membrane rupture. To address this limitation, herein, we developed and optimized a 3D bioprinting approach by evaluating the effect of key extrusion-based 3D bioprinting parameters-bioink viscosity, nozzle size, shape, and printing speed-on cell viability. Our results revealed  that cells printed in higher-viscosity bioinks, with smaller, cylindrical nozzles, exhibited lower viability due to their exposure to high shear stresses. Translational flow speed had a cell-dependent impact, as different cell types have different sensitivities to the magnitude and duration of shear stress inside the nozzle. Overall, evaluating these parameters could facilitate the development of 3D high-resolution bioprinted constructs for tissue regeneration applications, offering a more efficient alternative to traditional fabrication methods, which are often labor intensive, expensive, and repetitive.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH