Studying the multiscale mechanics of bio-based composites offers unique perspectives on underlying structure-property relations. Cellular materials, such as wood, are highly organized, hierarchical assemblies of load-bearing structural elements that respond to mechanical stimuli at the microscopic, mesoscopic and macroscopic scale. In this study, we modified oak wood with nanocrystalline ferrihydrite, a widespread ferric oxyhydroxide mineral, and characterized the resulting mechanical properties of the composite at various levels of organization. Ferrihydrite nanoparticles were deposited inside the wood cell wall by an in situ chemical reaction, resulting in increased stiffness and hardness of the functionalized secondary cell wall, as evidenced by region-specific nanoindentation tests under an electron microscope. Chemically modified and pristine wood samples were characterized by using atomic force microscopy in the bimodal frequency modulation mode, which produced topographical images from the cellular ultrastructure with high lateral resolution and localized nanomechanical information across distinct cell wall layers. Despite mineral reinforcement at the cell wall level, the macroscopic fracture behavior examined through three-point flexural testing remained unchanged upon modification, as cell-cell adhesion could be impaired by harsh chemical conditions.