Intermolecular 1,2,4-Thiadiazole Synthesis Enabled by Enzymatic Halide Recycling with Vanadium-Dependent Haloperoxidases.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sophia G Barthel, Kyle F Biegasiewicz, Katherine M Davis, Stacey K Jones, Cameron A Pascoe, Manik Sharma

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Journal of the American Chemical Society , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 698813

The enzymatic synthesis of heterocycles is an emerging biotechnology for the sustainable construction of societally important molecules. Herein, we describe an enzyme-mediated strategy for the oxidative dimerization of thioamides enabled by enzymatic halide recycling by vanadium-dependent haloperoxidase enzymes. This approach allows for intermolecular biocatalytic bond formation using a catalytic quantity of halide salt and hydrogen peroxide as the terminal oxidant. The established method is applied to a diverse range of thioamides to generate the corresponding 1,2,4-thiadiazoles in moderate to high yields with excellent chemoselectivity. Mechanistic experiments suggest that the reaction proceeds through two distinct enzyme-mediated sulfur halogenation events that are critical for heterocycle formation. Molecular docking experiments provide insight into reactivity differences between biocatalysts used in this study. Finally, the developed biocatalytic oxidative dimerization is applied to a preparative scale chemoenzymatic synthesis of the anticancer agent penicilliumthiamine B. These studies demonstrate that enzymatic halide recycling is a promising platform for intermolecular bond formation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH