The human peptidyl-prolyl-cis/trans isomerases (PPIases), Parvulin 14 and Parvulin 17, accelerate the cis/trans isomerization of Xaa-Pro moieties within protein sequences. By modulating the respective binding interfaces of their target proteins, they play a crucial role in determining the fate of their substrates within the cell. Although both enzymes share the same amino acid sequence, they have different cellular functions. This difference is due to a 25 residue N-terminal extension present in Par17 but absent in Par14. Using activity assays, NMR spectroscopy, and mass spectrometry, we demonstrate that the N-terminal extension of Par17 determines substrate selectivity by an intramolecular allosteric mechanism and exhibits a target-binding motif that interacts with actin.