Electrolyte Gated Transistors for Brain Inspired Neuromorphic Computing and Perception Applications: A Review.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Weisheng Wang, Liqiang Zhu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Switzerland : Nanomaterials (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 699074

Emerging neuromorphic computing offers a promising and energy-efficient approach to developing advanced intelligent systems by mimicking the information processing modes of the human brain. Moreover, inspired by the high parallelism, fault tolerance, adaptability, and low power consumption of brain perceptual systems, replicating these efficient and intelligent systems at a hardware level will endow artificial intelligence (AI) and neuromorphic engineering with unparalleled appeal. Therefore, construction of neuromorphic devices that can simulate neural and synaptic behaviors are crucial for achieving intelligent perception and neuromorphic computing. As novel memristive devices, electrolyte-gated transistors (EGTs) stand out among numerous neuromorphic devices due to their unique interfacial ion coupling effects. Thus, the present review discusses the applications of the EGTs in neuromorphic electronics. First, operational modes of EGTs are discussed briefly. Second, the advancements of EGTs in mimicking biological synapses/neurons and neuromorphic computing functions are introduced. Next, applications of artificial perceptual systems utilizing EGTs are discussed. Finally, a brief outlook on future developments and challenges is presented.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH