Oxidative stress, resulting from an imbalance between reactive oxygen species (ROS) and antioxidants, is a critical factor in the pathogenesis of a wide range of diseases. The excessive accumulation of ROS can cause severe cellular damage, leading to tissue dysfunction and disease progression. The development of nanomaterials with antioxidant properties presents a promising strategy for addressing this challenge. Herein, we report the fabrication of albumin-biomineralized copper nanoclusters (BCNCs) as a novel antioxidant platform and evaluate their effectiveness in combating oxidative stress. Our results show that BCNCs exhibit potent ROS scavenging abilities and protect cells from oxidative stress-induced damage, highlighting their potential as an effective therapeutic strategy for oxidative stress-related diseases.