The formation of ice due to global climate change poses challenges across multiple industries. Traditional anti-icing technologies often suffer from low efficiency, high energy consumption, and environmental pollution. Photothermal and hydrophobic surfaces with nano-micro structures (PHS-NMSs) offer innovative solutions to these challenges due to their exceptional optical absorption, heat conversion capabilities, and unique surface water hydrophobic characteristics. This paper reviews the research progress of PHS-NMSs in their anti-icing applications. It introduces the mechanisms of ice prevention, fabrication methods, and pathways for performance optimization of PHS-NMSs. The anti-icing performance of PHS-NMSs in different application scenarios is also discussed. Additionally, the paper provides insights into the challenges and future development directions in this field.