Protein N-glycosylation influences protein folding, stability, and trafficking, and has prominent functions in cell-cell adhesion and recognition. For the parasite Toxoplasma gondii, N-glycosylation of proteins is crucial for initial adhesion to host cells, parasite motility, and consequently, its ability to invade host cells. However, the glycoproteome of T. gondii remains largely unknown. In this study, we used the α-mannose-specific Burkholderia cenocepacia lectin A (BC2L-A) to enrich glycopeptides from T. gondii tachyzoites and analysed them by tandem mass spectrometry. The data enable the identification of over 100 N-glycoproteins with the glycosylation site(s) and the composition of the N-glycans at each site. T. gondii glycoproteins include known virulence factors, vaccine candidates as well as numerous uncharacterised proteins. These data provide ground knowledge to deepen our understanding of the role of glycoproteins in invasion and assist the rational design of vaccines.