Improving Predictability, Reliability and Generalisability of Brain-Wide Associations for Cognitive Abilities via Multimodal Stacking.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jeremiah Deng, Bryn Gibson, Ahmad R Hariri, David Ireland, Farzane Lal Khakpoor, Annchen R Knodt, Jean Li, Tracy R Melzer, Narun Pat, Sandhya Ramrakha, Alina Tetereva, William van der Vliet, Ethan T Whitman

Ngôn ngữ: eng

Ký hiệu phân loại: 797.123 Rowing

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 699612

Brain-wide association studies (BWASs) have attempted to relate cognitive abilities with brain phenotypes, but have been challenged by issues such as predictability, test-retest reliability, and cross-cohort generalisability. To tackle these challenges, we proposed a machine-learning "stacking" approach that draws information from whole-brain magnetic resonance imaging (MRI) across different modalities, from task-fMRI contrasts and functional connectivity during tasks and rest to structural measures, into one prediction model. We benchmarked the benefits of stacking, using the Human Connectome Projects: Young Adults (n=873, 22-35 years old) and Human Connectome Projects-Aging (n=504, 35-100 years old) and the Dunedin Multidisciplinary Health and Development Study (Dunedin Study, n=754, 45 years old). For predictability, stacked models led to out-of-sample
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH