Loureirin B (LB), an active component of Resina Draconis, exhibits hypoglycemic and hypolipidemic effects
however, its mode of action remains unclear. Here, ob/ob mice were utilized to investigate the effects of LB on the regulation of glucolipid metabolism disorders. Non-targeted metabolomics and 16S rDNA sequencing were performed to elucidate the potential mechanisms involved. Results indicated that LB treatment (45 mg/kg) significantly improved glucose intolerance and insulin resistance, reduced lipid levels, and alleviated hepatic steatosis. Non-targeted metabolomics analysis revealed that LB treatment regulated bile acid levels. Quantification of liver bile acids demonstrated that LB treatment significantly decreased the ratio of 12α-OH to non-12α-OH bile acids in the liver. 16S rDNA sequencing results showed that LB treatment increased the abundance of short-chain fatty acid-producing microbiota while decreasing the abundance of bile salt hydrolase (BSH) enzyme-producing microbiota. In conclusion, LB ameliorates glucolipid metabolism disorders by regulating liver bile acid levels and modulating the composition of the gut microbiota.