BACKGROUND: Growing public concern over the health risks of high-sugar diets has led to a consensus on the necessity of sugar reduction. This research evaluated the effects of oligosaccharides (OS), sodium carboxymethyl cellulose (CMCNa) and d-allulose as a compound improver on the quality of sugar-reduced bread, aiming to assess the feasibility of substantial sucrose reduction at the same time as maintaining desirable bread characteristics. RESULTS: Compared to bread with a 90% sugar reduction, the improved formulation increased specific volume by 50.14% and reduced hardness by 66.69%. It exhibited a homogeneous structure and crust color closely resembling that of full-sugar bread. Low-field NMR analysis revealed better moisture control, delaying water loss and starch retrogradation, with relative crystallinity and retrogradation enthalpy decreased by 45.31% and 59.96%, respectively. Additionally, the combination of XOS and d-allulose boosted volatile compound production, increasing the abundance of aldehydes, esters and heterocyclic compounds, enriching the flavor with fruity and baked aromas. CONCLUSION: The improvers enhanced the texture, appearance, flavor and storage stability of sugar-reduced bread, yielding qualities that are comparable to or even surpass conventional bread. These findings provide a new insight for the development of quality improvers designed for sugar-reduced bakery products. © 2024 Society of Chemical Industry.