Enhancing patient representation learning with inferred family pedigrees improves disease risk prediction.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jatin Arora, Johann de Jong, Zhihao Ding, Abdullah Mesut Erzurumluoglu, Xiayuan Huang, Daniel Lam, Stephen A Stanhope, Zuoheng Wang, Hongyu Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 611.316 Salivary glands

Thông tin xuất bản: England : Journal of the American Medical Informatics Association : JAMIA , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 700615

BACKGROUND: Machine learning and deep learning are powerful tools for analyzing electronic health records (EHRs) in healthcare research. Although family health history has been recognized as a major predictor for a wide spectrum of diseases, research has so far adopted a limited view of family relations, essentially treating patients as independent samples in the analysis. METHODS: To address this gap, we present ALIGATEHR, which models inferred family relations in a graph attention network augmented with an attention-based medical ontology representation, thus accounting for the complex influence of genetics, shared environmental exposures, and disease dependencies. RESULTS: Taking disease risk prediction as a use case, we demonstrate that explicitly modeling family relations significantly improves predictions across the disease spectrum. We then show how ALIGATEHR's attention mechanism, which links patients' disease risk to their relatives' clinical profiles, successfully captures genetic aspects of diseases using longitudinal EHR diagnosis data. Finally, we use ALIGATEHR to successfully distinguish the 2 main inflammatory bowel disease subtypes with highly shared risk factors and symptoms (Crohn's disease and ulcerative colitis). CONCLUSION: Overall, our results highlight that family relations should not be overlooked in EHR research and illustrate ALIGATEHR's great potential for enhancing patient representation learning for predictive and interpretable modeling of EHRs.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH