Quantitative prediction of toxicological points of departure using two-stage machine learning models: A new approach methodology (NAM) for chemical risk assessment.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Omar Aboumarzouk, Vaisali Chandrasekar, Sarada Prasad Dakua, Syed Mohammad, Ajay Vikram Singh

Ngôn ngữ: eng

Ký hiệu phân loại: 621.38152 Electrical, magnetic, optical, communications, computer engineering; electronics, lighting

Thông tin xuất bản: Netherlands : Journal of hazardous materials , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 700900

 Point of departure (POD) is a concept used in risk assessment to calculate the reference dose of exposure that is likely to have no appreciable risk on health. POD can be directly utilized from no observed adverse effect levels (NOAEL) which is the dose or exposure level at which there is little or no risk of adverse effects. However, NOAEL values are unavailable for most of the chemicals due to inconsistent animal toxicity data. Hence, the current study utilizes a two-stage machine learning (ML) model for predicting NOAEL values, based on data curated from diverse toxicity exposures. In the first stage, a random forest regressor is used for supervised outlier detection and removal addressing any variability in data and poor correlations. The refined data is then used for toxicity prediction using several ML models
  random forest and XGBoost show relatively higher performance with an R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH