Machine learning outperforms humans in microplastic characterization and reveals human labelling errors in FTIR data.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mario Boley, Wye-Khay Fong, Frithjof Herb

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Netherlands : Journal of hazardous materials , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 701065

Microplastics are ubiquitous and appear to be harmful, however, the full extent to which these inflict harm has not been fully elucidated. Analysing environmental sample data is challenging, as the complexity in real data makes both automated and manual analysis either unreliable or time-consuming. To address challenges, we explored a dense feed-forward neural network (DNN) for classifying Fourier transform infrared (FTIR) spectroscopic data. The DNN provides conditional class distributions over 16 microplastic categories given an FTIR spectrum, exceeding number of categories in other works. Our results indicate that this DNN, which is significantly smaller than contemporary models, outperforms other models and even human classification performance. Specifically, while the model broadly reproduces the decisions of human annotators, in cases of disagreement either both were incorrect or the human annotation was incorrect. The errors not being reproduced indicate that the DNN is making informed generalisable decisions. Additionally, this work indicates that there exists an upper limit on metrics measuring performance, where metrics measure agreement between human and model predictions. This work indicates that a small and efficient DNN can making high throughput analysis of difficult FTIR data possible, where predictions match or exceed the reliability typical to low-throughput methods.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH