3D-Printed Myocardium-Specific Structure Enhances Maturation and Therapeutic Efficacy of Engineered Heart Tissue in Myocardial Infarction.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Chenxu Guo, Shijun Hu, Ziyun Jiang, Hongbo Lan, Wei Lei, Xiaoyun Li, Xiaoyi Ren, Zhenya Shen, Mingliang Tang, Yaning Wang, Yong Wu, Miao Xiao, Yue Xu, Feixiang Zhang, Guangming Zhang, Huiqi Zhang, Jianyi Zhang, Xiaotong Zhao

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : Advanced science (Weinheim, Baden-Wurttemberg, Germany) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 701134

Despite advancements in engineered heart tissue (EHT), challenges persist in achieving accurate dimensional accuracy of scaffolds and maturing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), a primary source of functional cardiac cells. Drawing inspiration from cardiac muscle fiber arrangement, a three-dimensional (3D)-printed multi-layered microporous polycaprolactone (PCL) scaffold is created with interlayer angles set at 45° to replicate the precise structure of native cardiac tissue. Compared with the control group and 90° PCL scaffolds, the 45° PCL scaffolds exhibited superior biocompatibility for cell culture and improved hiPSC-CM maturation in calcium handling. RNA sequencing demonstrated that the 45° PCL scaffold promotes the mature phenotype in hiPSC-CMs by upregulating ion channel genes. Using the 45° PCL scaffold, a multi-cellular EHT is successfully constructed, incorporating human cardiomyocytes, endothelial cells, and mesenchymal stem cells. These complex EHTs significantly enhanced hiPSC-CM engraftment in vivo, attenuated ventricular remodeling, and improved cardiac function in mouse myocardial infarction. In summary, the myocardium-specific structured EHT developed in this study represents a promising advancement in cardiovascular regenerative medicine.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH