Bayesian Modeling of Cancer Outcomes Using Genetic Variables Assisted by Pathological Imaging Data.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yunju Im, Rong Li, Shuangge Ma

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Statistics in medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 701144

With the increasing maturity of genetic profiling, an essential and routine task in cancer research is to model disease outcomes/phenotypes using genetic variables. Many methods have been successfully developed. However, oftentimes, empirical performance is unsatisfactory because of a "lack of information." In cancer research and clinical practice, a source of information that is broadly available and highly cost-effective comes from pathological images, which are routinely collected for definitive diagnosis and staging. In this article, we consider a Bayesian approach for selecting relevant genetic variables and modeling their relationships with a cancer outcome/phenotype. We propose borrowing information from (manually curated, low-dimensional) pathological imaging features via reinforcing the same selection results for the cancer outcome and imaging features. We further develop a weighting strategy to accommodate the scenario where information borrowing may not be equally effective for all subjects. Computation is carefully examined. Simulations demonstrate competitive performance of the proposed approach. We analyze TCGA (The Cancer Genome Atlas) LUAD (lung adenocarcinoma) data, with overall survival and gene expressions being the outcome and genetic variables, respectively. Findings different from the alternatives and with sound properties are made.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH