Multi-omics analysis reveals toxicity and gut-liver axis disruption induced by polychlorinated biphenyls exposure in Yellowfin Seabream (Acanthopagrus latus).

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hao Huang, Kuntong Jia, Yaoxuan Song, Ying Yang, Meisheng Yi, Shichun Zou

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Netherlands : Journal of hazardous materials , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 701191

Polychlorinated biphenyls (PCBs) are persistent organic pollutants known for their environmental persistence and bioaccumulation, posing significant health risks. This study examines the toxic effects of a representative PCBs (Aroclor 1254) on yellowfin seabream (Acanthopagrus latus) exposured for 30 days through a multi-omics approach. Histopathological examinations revealed structural damage to the intestinal structure and hepatic steatosis, along with elevated serum lipopolysaccharide levels, indicating compromised intestinal barrier integrity and liver inflammation. Metabolomic profiling showed significant alterations in lipid metabolites, including elevated lysophosphatidylcholines and arachidonic acid derivatives. Transcriptomic analysis unveiled 2272 differentially expressed genes in the liver, with notable changes in immune response and metabolic pathways. Gut microbiome analysis showed dysbiosis characterized by an increase in Proteobacteria and a decrease in Firmicutes and Actinobacteria. Remarkably, Tetranor-12S-HETE and LPC 15:1 emerged as key biomarkers for the disruption of the gut-liver axis, correlating with immune gene expression and gut microbiota composition. The integration of transcriptomic, metabolomic, and microbiome data highlighted the complex interplay between A1254 exposure and the gut-liver axis, emphasizing the central role played by PPAR signaling in mediating these effects. Collectively, these results indicate that exposure to A1254 results in bioaccumulation in the liver and gut, leading to severe tissue injury, microbiota dysbiosis, and dysregulation of the gut-liver axis, ultimately disrupting lipid metabolism. These findings underscore the metabolic health risks posed by PCBs exposure in aquatic environments.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH