The chemical looping co-gasification of nitrogen-containing algal biomass and coal could effectively realize the high-value utilization of gasification products, but the mechanism of conversion of nitrogen-containing pollutants is not clear. In this work, the effects of the different ratios of microalgae on the co-gasification process were first explored, and the results showed that the 40 % coal + 60 % microalgae blending had the best synergistic effect, with a comprehensive synergistic index (CSI) of 1.35 as the maximum value. The effects of temperature, the ratio of OCs to feed (O/C) and steam flow rate on the evolution of nitrogen-containing species in the co-gasification products were explored based on the optimal mixing ratio, and the results showed that elevating the reaction temperature promotes the generation of nitrogen oxide precursors, and an appropriate amount of steam could inhibit the generation of NOx. The nitrogen in coke mainly came from the Maillard reaction between carbonyl (-CO) compounds and amino (-NH