BACKGROUND: The mechanisms underlying cardiac remodeling in aortic valvular (AoV) disease remain poorly understood, partially due to the insufficiency of appropriate preclinical animal models. Here, we present a novel murine model of aortic regurgitation (AR) generated by trans-apical wire destruction of the AoV. METHODS: Directed by echocardiography, apical puncture of the left ventricle (LV) was performed in adult male C57BL/6 mice, and a metal guidewire was used to induce AoV destruction. Echocardiography, invasive LV hemodynamic and histological examination were conducted to assess the degree of AR, LV function and remodeling. RESULTS: AR mice exhibited rapid aortic regurgitation velocity (424 ± 15.22 mm/s) immediately following successful surgery. Four weeks post-surgery, echocardiography revealed a 54.6% increase in LV diastolic diameter and a 55.1% decrease in LV ejection fraction in AR mice compared to sham mice. Pressure-volume catheterization indicated that AR mice had significantly larger LV end-diastolic volumes (66.2 ± 1.5 μL vs. 41.8 ± 3.4 μL), reduced LV contractility (lower dP/dt CONCLUSIONS: The trans-apex wire-induced destruction of the AoV establishes a novel and efficient murine model to develop AR, characterized by significant eccentric LV hypertrophy, heart failure, and pulmonary congestion.