Charge Transport Systems with Fermi-Dirac Statistics for Memristors.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Maxime Herda, Ansgar Jüngel, Stefan Portisch

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: Germany : Journal of nonlinear science , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 702471

An instationary drift-diffusion system for the electron, hole, and oxygen vacancy densities, coupled to the Poisson equation for the electric potential, is analyzed in a bounded domain with mixed Dirichlet-Neumann boundary conditions. The electron and hole densities are governed by Fermi-Dirac statistics, while the oxygen vacancy density is governed by Blakemore statistics. The equations model the charge carrier dynamics in memristive devices used in semiconductor technology. The global existence of weak solutions is proved in up to three space dimensions. The proof is based on the free energy inequality, an iteration argument to improve the integrability of the densities, and estimations of the Fermi-Dirac integral. Under a physically realistic elliptic regularity condition, it is proved that the densities are bounded.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH