DynHeter-DTA: Dynamic Heterogeneous Graph Representation for Drug-Target Binding Affinity Prediction.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Changli Li, Guangyue Li

Ngôn ngữ: eng

Ký hiệu phân loại: 519.287 Expectation and prediction

Thông tin xuất bản: Switzerland : International journal of molecular sciences , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 70336

 In drug development, drug-target affinity (DTA) prediction is a key indicator for assessing the drug's efficacy and safety. Despite significant progress in deep learning-based affinity prediction approaches in recent years, there are still limitations in capturing the complex interactions between drugs and target receptors. To address this issue, a dynamic heterogeneous graph prediction model, DynHeter-DTA, is proposed in this paper, which fully leverages the complex relationships between drug-drug, protein-protein, and drug-protein interactions, allowing the model to adaptively learn the optimal graph structures. Specifically, (1) in the data processing layer, to better utilize the similarities and interactions between drugs and proteins, the model dynamically adjusts the connection strengths between drug-drug, protein-protein, and drug-protein pairs, constructing a variable heterogeneous graph structure, which significantly improves the model's expressive power and generalization performance
  (2) in the model design layer, considering that the quantity of protein nodes significantly exceeds that of drug nodes, an approach leveraging Graph Isomorphism Networks (GIN) and Self-Attention Graph Pooling (SAGPooling) is proposed to enhance prediction efficiency and accuracy. Comprehensive experiments on the Davis, KIBA, and Human public datasets demonstrate that DynHeter-DTA exceeds the performance of previous models in drug-target interaction forecasting, providing an innovative solution for drug-target affinity prediction.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH