Photoredox catalysis in protein systems presents exciting opportunities to achieve sustainable and efficient enzymatic reactions driven by light. Here, we report the design and characterization of PhotoNiR, an engineered azurin-based protein incorporating a red copper center and a lanthanide-binding tag (LBT). This dual-metal system enables photoredox reduction of nitrite to nitric oxide via a proposed donor-f-electron-acceptor (D-f-A) electron transfer mechanism. Upon photoirradiation, aromatic residues in the LBT donate electrons to the lanthanide ion, which relays them to the Cu(II) center, reducing it to Cu(I). The reduced Cu(I)-PhotoNiR catalyzes the reduction of NO