Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by chronic inflammation and progressive damage to connective tissue. It is driven by dysregulated cellular homeostasis, often leading to autoimmune destruction and permanent disability in severe cases. Over the past decade, various drug delivery systems have been developed to enable targeted therapies for disease prevention, reduction, or suppression. As an emerging therapeutic platform, extracellular vesicles (EVs) offer several advantages over conventional drug delivery systems, including biocompatibility and low immunogenicity. Consequently, an increasing number of studies have explored EV-based delivery systems in the treatment of RA, leveraging their natural ability to evade phagocytosis, prolong in vivo half-life, and minimize the immunogenicity of therapeutic agents. In this review, we first provide an in-depth overview of the pathogenesis of RA and the current treatment landscape. We then discuss the classification and biological properties of EVs, their potential therapeutic mechanisms, and the latest advancements in EVs as drug delivery platforms for RA therapy. We emphasize the significance of EVs as carriers in RA treatment and their potential to revolutionize therapeutic strategies. Furthermore, we examine key technological innovations and the future trajectory of EV research, focusing on the challenges and opportunities in translating these platforms into clinical practice. Our discussion aims to offer a comprehensive understanding of the current state and future prospects of EV-based therapeutics in RA.