Optimizing Automated Hematoma Expansion Classification from Baseline and Follow-Up Head Computed Tomography.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Gaby Abou Karam, Min-Chiun Chen, Andrea Dell'Orco, Dmitriy Desser, Guido J Falcone, Shahram Majidi, Ajay Malhotra, Santosh B Murthy, Jawed Nawabi, Seyedmehdi Payabvash, Adnan I Qureshi, Kevin N Sheth, Anh T Tran, Tal Zeevi, Julia Zietz

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Switzerland : Applied sciences (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 703552

 Hematoma expansion (HE) is an independent predictor of poor outcomes and a modifiable treatment target in intracerebral hemorrhage (ICH). Evaluating HE in large datasets requires segmentation of hematomas on admission and follow-up CT scans, a process that is time-consuming and labor-intensive in large-scale studies. Automated segmentation of hematomas can expedite this process
  however, cumulative errors from segmentation on admission and follow-up scans can hamper accurate HE classification. In this study, we combined a tandem deep-learning classification model with automated segmentation to generate probability measures for false HE classifications. With this strategy, we can limit expert review of automated hematoma segmentations to a subset of the dataset, tailored to the research team's preferred sensitivity or specificity thresholds and their tolerance for false-positive versus false-negative results. We utilized three separate multicentric cohorts for cross-validation/training, internal testing, and external validation (
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH