The association between gut microbiota and accelerated aging and frailty: a Mendelian randomization study.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Guoyu Guan, Hanqi Jia, Hanyu Li, Zhiliang Yan, Songbai Zheng, Sangdan Zhuoga

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : Aging clinical and experimental research , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 703908

 BACKGROUND: The recent observational studies have unveiled the correlation between the composition and dynamic alterations of the gut microbiome and aging
  however, the causal relationship remains uncertain. AIMS: The objective of this study is to investigate the causal relationship between the gut microbiome and accelerated aging as well as frailty, from a genetic perspective. METHODS: We obtained data on the gut microbiome, intrinsic epigenetic age acceleration, and Frailty Index from published large-scale genome-wide association studies. A two-sample Mendelian randomization analysis was conducted primarily using inverse variance weighting model. We utilized the MR-Egger intercept analysis, IVW method, the Cochran Q test, and the leave-one-out analysis to assess the robustness of the results. RESULTS: IVW analysis indicated a potential association between Peptococcus (OR: 1.231, 95% CI 1.013-1.497, P = 0.037), Dialister (OR: 1.447, 95% CI 1.078-1.941, P = 0.014) and Subdoligranulum (OR: 1.538, 95% CI 1.047-2.257, P = 0.028) with intrinsic epigenetic age acceleration
  while Prevotella 7 (OR: 0.792, 95% CI 0.672-0.935, P = 0.006) was associated with a potential protective effect. Allisonella (OR: 1.033, 95% CI 1.005-1.063, P = 0.022), Howardella (OR: 1.026, 95% CI 1.002-1.050, P = 0.031) and Eubacterium coprostanoligenes (OR: 1.037, 95% CI 1.001-1.073, P = 0.042) were associated with an increased risk of frailty
  conversely, Flavonifractor (OR: 0.954, 95% CI 0.920-0.990, P = 0.012) and Victivallis (OR: 0.984, 95% CI 0.968-1.000, P = 0.049) appeared to exhibit a potential protective effect against frailty. CONCLUSION: The findings of this study provide further evidence for the genetic correlation between gut microbiota and accelerated aging as well as frailty, enhancing the understanding of the role of gut microbiota in aging-related processes. However, the underlying mechanisms and potential clinical applications require further investigation before any targeted interventions can be developed.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH