The study aims to assess the impact of graphene quantum dot-hyaluronic acid-quinoline nanocomposites (GQD-HA-Qu NCs) on MCF-7, HT-29, A2780, PANC-1, and HeLa cell lines. The GQD-HA-Qu NCs were characterized using dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), and Fourier-transform infrared (FTIR) spectroscopy. MTT assays and flow cytometry evaluated the cytotoxic and apoptotic effects of synthesized NCs. Additionally, real-time PCR was utilized to assess apoptotic gene expression. The DLS assay revealed a particle size of 224.96 nm with a polydispersity index (PDI) of 0.3. The FESEM analysis also confirmed the uniform spherical morphology of NCs. The MTT assessment demonstrated significant cytotoxicity in all cell lines, with MCF-7 and A2780 exhibiting pronounced sensitivity (P <
0.001). The flow cytometry analyses also revealed a dose-dependent increase in late apoptosis at higher concentrations of GQD-HA-Qu NCs. Notably, p53 expression was significantly upregulated compared to the untreated cells (P <
0.01), while caspases 8 and 9 showed no substantial change. This finding indicates that the p53 pathway is predominant in mediating GQD-HA-Qu NCs-induced apoptosis. The present study suggests that GQD-HA-Qu NCs are a promising treatment with selective cytotoxicity against cancer cells and robust antioxidant activity. These findings warrant further investigation for potential clinical applications.