Lung cancer detection with machine learning classifiers with multi-attribute decision-making system and deep learning model.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: N Manikandan, T Meeradevi, L Murali, Krishnaraj Ramaswamy, S Sasikala

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 704065

Diseases of the airways and the other parts of the lung cause chronic respiratory diseases. The major cause of lung disease is tobacco smoke, along with risk factors such as dust, air pollution, chemicals, and frequent lower respiratory infections during childhood. Early detection of these diseases requires the analysis of medical images, which would aid doctors in providing effective treatment.This paper aims to classify lung X-ray images as benign or malignant and to identify the type of disease, such as Atelectasis, Infiltration, Nodule, and Pneumonia, if the disease is malignant. Machine learning (ML) approaches, combined with a multi-attribute decision-making method called Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), are used to rank different classifiers. Additionally, the deep learning (DL) model Inception v3 is proposed. This method ranks the SVM with RBF as the best classifier among the others used in this approach. Furthermore, the results show that the deep learning model achieves the best accuracy of 97.05%, which is 11.8% higher than the machine learning approach using the same dataset.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH