Graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic devices due to their unique electronic and transport properties. In this study, we investigate the impact of passivation on cove-edge graphene nanoribbon (CGNR) using both cadmium (Cd) and hydrogen (H) atoms. Through a comprehensive density functional theory (DFT) analysis coupled with non-equilibrium Green's function (NEGF) simulations, we explore the electronic transport properties and device behavior of these passivated CGNRs. Our results reveal a distinctive semiconductor-to-metal transition in the electronic properties of the Cd-passivated CGNRs. This transition, induced by the interaction between Cd atoms and the GNR edges, leads to a modulation of the bandstructure and a pronounced shift in the conductance characteristics. Interestingly, the Cd-passivated CGNR devices exhibit negative differential resistance (NDR) with remarkably high peak-to-valley current ratios (PVCRs). NDR is a phenomenon critical for high-speed switching, enables efficient signal modulation, making it valuable for nanoscale transistors, memory elements, and oscillators. The highest PVCR is measured to be 53.7 for Cd-CGNR-H which is x10 and x17 times higher than strained graphene nanoribbon and silicene nanoribbon respectively. These findings suggest the promising potential of passivated CGNRs as novel components for high-performance nanoelectronic devices.