Enhancing cardiovascular monitoring: a non-linear model for characterizing RR interval fluctuations in exercise and recovery.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Matías Castillo-Aguilar, Diego Mabe-Castro, David Medina, Cristian Núñez-Espinosa

Ngôn ngữ: eng

Ký hiệu phân loại: 809.008 History and description with respect to kinds of persons

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 704147

This work aimed to develop and validate a novel non-linear model to characterize RR interval (RRi) time-dependent fluctuations throughout a rest-exercise-recovery protocol, offering a more precise and physiologically relevant representation of cardiac autonomic responses than traditional HRV metrics or linear approaches. Using data from a cohort of 272 elderly participants, the model employs logistic functions to capture the non-stationary and transient nature of RRi time-dependent fluctuations, with parameter estimation achieved via Hamiltonian Monte Carlo. Sobol sensitivity analysis identified baseline RRi (α) and recovery proportion (c) as the primary drivers of variability, underscoring their critical roles in autonomic regulation and resilience. Validation against real-world RRi data demonstrated robust model performance (R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH