Deep learning models in classifying primary bone tumors and bone infections based on radiographs.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yu He, Chenbei Li, Zhaoqi Li, Zhihong Li, Chao Tu, Lu Wan, Hua Wang, Haodong Xu

Ngôn ngữ: eng

Ký hiệu phân loại: 267 Associations for religious work

Thông tin xuất bản: England : NPJ precision oncology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 704180

Primary bone tumors (PBTs) present significant diagnostic challenges due to their heterogeneous nature and similarities with bone infections. This study aimed to develop an ensemble deep learning framework that integrates multicenter radiographs and extensive clinical features to accurately differentiate between PBTs and bone infections. We compared the performance of the ensemble model with four imaging models based solely on radiographs utilizing EfficientNet B3, EfficientNet B4, Vision Transformer, and Swin Transformers. The patients were split into external dataset (N = 423) and internal dataset [including training (N = 1044), test (N = 354), and validation set (N = 171)]. The ensemble model outperformed imaging models, achieving areas under the curve (AUCs) of 0.948 and 0.963 on internal and external sets, respectively, with accuracies of 0.881 and 0.895. Its performance surpassed junior and mid-level radiologists and was comparable to senior radiologists (accuracy: 83.6%). These findings underscore the potential of deep learning in enhancing diagnostic precision for PBTs and bone infections (Research Registration Unique Identifying Number (UIN): researchregistry10483 and with details are available at https://www.researchregistry.com/register-now#home/registrationdetails/6693845995ba110026aeb754/ ).
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH