The thermal conversion of municipal sewage sludge (MSS) offers significant potential for sustainable waste management, particularly through the production of biochar. This study investigates the properties and soil application effects of three biochar types produced via pyrolysis: (i) pure sewage sludge (100%), (ii) sewage sludge blended with sawdust (50%+50%), and (iii) sewage sludge combined with sawdust and zeolite (50%+45%+5%). These biochars were applied at rates of 2.5% and 7.5% (w/w) to arable soil and assessed in an 8-week greenhouse experiment using lettuce (Lactuca sativa L. var. Brilant) as a model crop. The sewage sludge biochar was characterized by high nitrogen, phosphorus, and water-extractable calcium but exhibited low organic matter and organic carbon content. It enhanced soil enzyme activities related to carbon and nitrogen mineralization without affecting microbial respiration. However, at 7.5% application rate, this biochar caused the highest chlorophyll b content in lettuce, despite acidifying the soil. Adding sawdust to the pyrolysis feedstock significantly increased organic matter, organic carbon (with reduced recalcitrance), and the C: N ratio of biochar. This biochar formulation promoted microbial activity (as indicated by changes in soil respiration) and nutrient cycling, particularly through increased glucosidase activity. Conversely, addition of zeolite to the pyrolysis feedstock reduced the organic matter and organic carbon content while increasing biochar recalcitrance and nutrient immobilization, particularly of sulfur, ammonium, phosphorus, and calcium. At the 7.5% dose, the sawdust + zeolite-enriched biochar improved soil pH and potentially enhanced nutrient retention. However, it did not stimulate microbial enzyme activity or respiration, leading to lower photosynthetic pigment levels and reduced biomassin lettuce, especially at higher application rate. For short-term soil applications under the conditions of this pot trial, the sewage sludge-sawdust biochar demonstrated the most beneficial effects, rapidly stimulating microbial activity and nutrient transformation. In contrast, the sewage sludge-sawdust-zeolite biochar limited nutrient availability and plant growth, suggesting it may be less suitable for immediate soil and plant nutrition. Long-term studies are needed to fully assess the implications of these biochar types for sustainable agriculture. This study highlights the importance of feedstock composition and selection in tailoring biochar properties to meet specific soil and crop requirements.