Transparent polymers are key materials for producing a broad category of optical components. For specific uses, the material needs additional adaptation of its basic properties. In this context, the current article is focused on applying two kinds of treatments for tailoring the optical and morphological features of low-density polyethylene to match the criteria as optical retardation plates or band-pass filters. The first kind of treatment involves combined mechanical stretching (at various degrees) and abrasion. The second type of treatment resides in polymer foil exposure to plasma and immersion in a solution of a triphenylmethane derivative. For optical compensation purposes, the polymer foils were subjected to combined mechanical treatments consisting of stretching (at various degrees) and abrasion. To assess the level of produced molecular ordering, the polyethylene films were subjected to polarized infrared spectral measurements, polarized refractometry tests and morphological analyses by polarized light microscopy and atomic force microscopy. The results indicated that inducing birefringence and morphology anisotropy of samples leads to proper optical retardation. For optical filter purposes, the dyed polymer was shown to have changes in colorimetric parameters and morphological features and absorbed radiation in the interval of 480-660 nm, while others were transmitted. These characteristics are adequate for band-pass filter uses.