Osteosarcoma (OS) is the most common primary malignant bone tumor, predominantly affecting children, adolescents, and young adults. Epithelial-mesenchymal transition (EMT), a process in which epithelial cells lose their cell-cell adhesion and gain migratory and invasive properties, has been extensively studied in various carcinomas. However, its role in mesenchymal tumors like osteosarcoma remains less explored. EMT is increasingly recognized as a key factor in the progression of osteosarcoma, contributing to tumor invasion, metastasis, and resistance to chemotherapy. This narrative review aims to provide a comprehensive overview of the molecular mechanisms driving EMT in osteosarcoma, highlighting the involvement of signaling pathways such as TGF-β, transcription factors like Snail, Twist, and Zeb, and the role of microRNAs in modulating EMT. Furthermore, we discuss how EMT correlates with poor prognosis and therapy resistance in osteosarcoma patients, emphasizing the potential of targeting EMT for therapeutic intervention. Recent advancements in understanding EMT in osteosarcoma have opened new avenues for treatment, including EMT inhibitors and combination therapies aimed at overcoming drug resistance. By integrating biological insights with clinical implications, this review underscores the importance of EMT as a critical process in osteosarcoma progression and its potential as a therapeutic target.