The mechanical performance of Fused Deposition Modeling (FDM)-produced polymer composites is highly dependent on processing parameters
however, most studies focus on unreinforced polymers, leaving a gap in understanding how these parameters influence continuous wire-reinforced composites. This study addresses this gap by investigating the effect of hatch spacing and layer thickness on the tensile properties of steel wire-reinforced PLA composites. The Taguchi method was employed to systematically optimize mechanical performance, using an L9 orthogonal array to evaluate tensile strength across different process conditions. The results showed that layer thickness was the most influential factor, contributing to 75.861% of the total variance (F = 60.90,