Deep-Neural-Networks-Based Data-Driven Methods for Characterizing the Mechanical Behavior of Hydroxyl-Terminated Polyether Propellants.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xiaolong Fu, Ruohan Han, Yuhang Liu, Bei Qu, La Shi

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Switzerland : Polymers , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 705081

Hydroxyl-terminated polyether (HTPE) propellants are attractive in the weapons materials and equipment industry for their insensitive properties. Storage, combustion, and explosion of solid propellants are affected by their mechanical properties, so accurate mechanical modeling is vital. In this study, deep neural networks are applied to model composite solid-propellant mechanical behavior for the first time. A data-driven framework incorporating a novel training-testing splitting strategy is proposed. By building Neural Networks (FFNNs), Kolmogorov-Arnold Networks (KANs) and Long Short-Term Memory (LSTM) networks and optimizing the model framework and parameters using a Bayesian optimization algorithm, the results show that the LSTM model predicts the stress-strain curve of HTPE propellant with an RMSE of 0.053 MPa, which is 62.7% and 48.5% higher than the FFNNs and the KANs, respectively. The R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH