Controlling traps and structural defects in perovskite absorber layers is crucial for enhancing both the device efficiency and long-term stability of perovskite solar cells (PSCs). Here we demonstrate the modification of perovskite films by introducing low-cost green polymers, polysuccinimide (PSI) and polyasparagine (PASP), into the perovskite layer. Structural, morphological and optoelectronic properties of polymer-modified perovskite films were probed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and UV-Vis spectroscopy. The incorporation of PSI triggers interactions between the polymer and perovskite, leading to the passivation of surface defects at the grain boundaries and improved morphology of perovskite films. This defect passivation boosted PSC performance, providing power conversion efficiency (PCE) values up to 20.1%. An optimal polymer concentration of 0.1 mg/mL in the perovskite precursor solution was identified for an improvement in the photovoltaic performance. It was shown that the primary factor leading to the observed enhancement in the power conversion efficiency for PSI-modified PSCs is the increase in the lifetime of charge carriers due to the efficient passivation of surface defects and suppression of recombination losses. Additionally, PSI-modified PSCs demonstrated enhanced stability, retaining over 80% of their initial efficiency after 40 days of storage under ambient conditions without encapsulation. The obtained results highlight the effectiveness of green polymer additives in passivating surface defects in perovskite films and provide a viable approach for improving the stability and performance of perovskite solar cells.