Systemic Administration of the Phytochemical, Myricetin, Attenuates the Excitability of Rat Nociceptive Secondary Trigeminal Neurons.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Risako Chida, Yukito Sashide, Mamoru Takeda, Syogo Utugi, Sana Yamaguchi

Ngôn ngữ: eng

Ký hiệu phân loại: 553.674 Mica

Thông tin xuất bản: Switzerland : Molecules (Basel, Switzerland) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 705244

While the modulation of the excitatory and inhibitory neuronal transmission by the phytochemical flavonoid, myricetin (MYR), has been noted in the nervous system, the way in which MYR affects the excitability of nociceptive sensory neurons in vivo remains to be established. This study aimed to explore whether administering MYR intravenously, in acute doses, to rats, diminishes the excitability of SpVc wide-dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Recordings of extracellular single units were obtained from SpVc neurons when orofacial mechanical stimulation was applied to anesthetized rats. The average firing rate of SpVc WDR neurons, to both non-noxious and noxious mechanical stimuli, was significantly and dose-dependently inhibited by MYR (1-5 mM, intravenously), and the maximum reversible inhibition of the discharge frequency, for both non-noxious and noxious mechanical stimuli, occurred within 5-10 min. The suppressive effects of MYR continued for about 20 min. These findings indicate that an acute, intravenous administration of MYR reduces the SpVc nociceptive transmission, likely through the inhibition of the CaV channels and by activating the Kv channels. Therefore, MYR might be utilized as a treatment for trigeminal nociceptive pain, without causing side effects.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH