In recent years, the pollutant sulfamethoxazole (SMX) that is widely used in medical therapy has been frequently detected in different water systems. Thereby, it is necessary to develop green and effective advanced oxidation strategies, especially the electro-oxidation process. In this study, an electro-oxidation system featuring a boron-doped diamond (BDD) anode and NaCl as the supporting electrolyte was implemented to effectively remove sulfamethoxazole (SMX) without the addition of external oxidants. The operational parameters were optimized using the response surface methodology with a pH 7.5, current density of 4.44 mA/cm