Terpenes are pivotal for plant growth, development, and adaptation to environmental stresses. With the advent of extensive genomic data and sophisticated bioinformatics tools, new insights into the evolutionary dynamics and functional diversification of terpene synthases (TPSs) have emerged. Despite genome-wide identifications of the TPS family in certain species, comprehensive cross-species analyses remain scarce. In this study, we conducted a genome-wide identification and subgroup classification of TPS families across 115 angiosperms with available genomic sequences. Our phylogenomic synteny network analysis elucidated the complex evolutionary history of TPS genes, revealing notable expansions and contractions among subgroups. Specifically, TPS-a showed significant expansion, while TPS-b was variably lost in some Poaceae, indicating adaptive responses. TPS-c maintained considerable conservation across species, whereas TPS-e/f diverged into distinct evolutionary trajectories despite functional overlap, with TPS-e further splitting into two angiosperm-specific clades. The TPS-g subgroup displayed lineage-restricted distribution, primarily in super-rosids and monocots. Notably, TPS-d and TPS-h subgroups were absent in angiosperms. Employing