Various types of wounds represent a persistent healthcare burden that demands innovative and effective therapeutic solutions. Innovative approaches have emerged that focus on skin regeneration with minimal side effects. One such method is cell-free therapy that utilizes the secretome of human mesenchymal stem cells (hMSCs) as a promising alternative to traditional cell-based therapies, leveraging a complex mixture of bioactive molecules, including growth factors, cytokines, and extracellular vesicles, to accelerate tissue regeneration. This systematic review synthesizes the findings of 35 studies evaluating the impact of hMSC-derived secretomes on wound healing, with a focus on their regenerative, immunomodulatory, and angiogenic effects. The influence of MSC sources (adipose tissue, bone marrow, umbilical cord) and culture conditions on secretome composition and efficacy in the cutaneous wound healing process is examined, highlighting their therapeutic potential in regenerative medicine. This review also explores emerging preclinical and clinical applications, highlighting promising results, such as enhanced fibroblast proliferation, reduced inflammation, and improved extracellular matrix remodeling. In addition, advances in secretome-based biomaterials, including hydrogels and scaffolds, which optimize therapeutic delivery and efficacy are discussed. Despite the growing body of evidence supporting the safety and efficacy of secretomes, challenges remain regarding standardization, large-scale production, and clinical validation. This review highlights the potential of MSC-derived secretomes as a next-generation cell-free approach for wound healing and regenerative medicine.