KinasePred: A Computational Tool for Small-Molecule Kinase Target Prediction.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Luca Campisi, Miriana Di Stefano, Salvatore Galati, Antonio Giordano, Carlotta Granchi, Marco Macchia, Lisa Piazza, Clarissa Poles, Giulio Poli, Tiziano Tuccinardi

Ngôn ngữ: eng

Ký hiệu phân loại: 685.363 Snowshoes

Thông tin xuất bản: Switzerland : International journal of molecular sciences , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 705527

Protein kinases are key regulators of cellular processes and critical therapeutic targets in diseases like cancer, making them a focal point for drug discovery efforts. In this context, we developed KinasePred, a robust computational workflow that combines machine learning and explainable artificial intelligence to predict the kinase activity of small molecules while providing detailed insights into the structural features driving ligand-target interactions. Our kinase-family predictive tool demonstrated significant performance, validated through virtual screening, where it successfully identified six kinase inhibitors. Target-focused operational models were subsequently developed to refine target-specific predictions, enabling the identification of molecular determinants of kinase selectivity. This integrated framework not only accelerates the screening and identification of kinase-targeting compounds but also supports broader applications in target identification, polypharmacology studies, and off-target effect analysis, providing a versatile tool for streamlining the drug discovery process.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH