The transcription factor carbohydrate response element binding protein (ChREBP) has emerged as a crucial regulator of hepatic glucose and lipid metabolism. The increased ChREBP activity involves the pro-oncogenic PI3K/AKT/mTOR signaling pathway that induces aberrant lipogenesis, thereby promoting hepatocellular carcinomas (HCC). However, the molecular pathogenesis of ChREBP-related hepatocarcinogenesis remains unexplored in the high-fat diet (HFD)-induced mouse model. Male C57BL/6J (WT) and liver-specific (L)-ChREBP-KO mice were maintained on either a HFD or a control diet for 12, 24, and 48 weeks, starting at the age of 4 weeks. At the end of the feeding period, mice were perfused, and liver tissues were formalin-fixed, paraffin-embedded, sectioned, and stained for histological and immunohistochemical analysis. Biochemical and gene expression analysis were conducted using serum and frozen liver tissue. Mice fed with HFD showed a significant increase (