Expression Patterns of SMAD1-8 in the Peripheral Facial Nerve Following Compressive Nerve Injury or Axotomy.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sung Soo Kim, Jae Min Lee, Seung Geun Yeo, Dong Keon Yon

Ngôn ngữ: eng

Ký hiệu phân loại: 617.99 *Military surgery

Thông tin xuất bản: Switzerland : International journal of molecular sciences , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 705775

Facial nerve injury can lead to significant functional impairment, emotional impacts, and difficulties in social and economic activities. Although peripheral nerves have the potential for recovery, incomplete regeneration can pose challenges. Suppressor of Mothers Against Decapentaplegic Homolog (SMAD) proteins are crucial in the nerve-regeneration process. The study aimed to investigate the changes in SMAD protein expression involved in peripheral nerve regeneration following facial nerve injury induced by compression or axotomy in a pre-clinical study conducted on Sprague Dawley rats. Facial nerve recovery was assessed at 1, 2, 3, 4, 8, and 12 weeks post-facial nerve compression and axotomy using behavioral tests, including whisker movement and eyelid blink-reflex tests. Additionally, the role of SMAD proteins in the nerve regeneration process was evaluated by analyzing the expression of SMAD1-8 proteins at 2 and 12 weeks post-injury. Behavioral tests revealed significant impairment in facial nerve function in both the Compression and Axotomy groups compared with the Sham group at early time points. Recovery was observed in the Compression group by 2 weeks, whereas the Axotomy group exhibited prolonged impairment through 12 weeks. SMAD protein analyses showed increased expression of SMAD2, SMAD7, and SMAD8 following compression injury, whereas axotomy led to more extensive increases in expression that included SMAD1, SMAD2, SMAD3, SMAD4, SMAD6, SMAD7, and SMAD8. These findings suggest that SMAD proteins play differential roles in nerve regeneration following facial nerve injuries caused by compression versus axotomy. The distinct expression patterns of SMAD proteins highlight their potential as therapeutic targets for enhancing nerve regeneration and functional recovery in peripheral nerve injuries.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH