Diabetic neuropathy (DN) is characterized by nerve damage as a consequence of diabetes mellitus. Diabetes causes high blood glucose and triglyceride levels, which destroy the nerve blood vessels over time and trigger DN. Peripheral neuropathy is the most common type of DN, which encompasses a broad range of symptoms. One fourth of patients with diabetes suffer from neuropathic pain, which decreases their quality of life and puts them at high risk for emotional disturbances and depression. Finding an adequate therapy is an essential element in the cure of painful DN (PDN). Since the pathophysiology of this disease still needs to be elucidated, this has led to the development of various in vivo diabetic models. Animal models of DN not only provide insights into this disease but also are significant drivers for treatment assessment and improvement. In this review, we present the major features of the most commonly used chemically and diet-induced models of PDN in rodents and their progress to date, which are utilized for a better understanding of the disease mechanism for finding novel therapeutics. Considering the role of Ca