Precisely localizing the spatial distribution of proteins within various brain cell types and subcellular compartments, such as the synapses, is essential for generating and testing hypotheses to elucidate their roles in brain function. While the fms-like tyrosine kinase-3 (Flt3) has been extensively studied in the context of blood cell development and leukemia pathogenesis, its role in the brain remains poorly understood. Previous efforts to address this issue were hindered by the low expression levels of Flt3 and the limited sensitivity of the standard immunolabeling method, which were insufficient to reliably detect Flt3 protein in brain tissue. In this study, we systematically characterized Flt3 protein localization during brain development using a highly sensitive immunolabeling method based on alkaline phosphatase (AP) polymer biochemistry. This approach revealed a previously unrecognized neuron-selective Flt3 expression pattern in both mouse and human cerebella, with a developmental increase in total protein levels accompanied by a shift from a cytosolic to a dendritic subcellular distribution. Combining AP-polymer-based immunohistochemistry (AP-IHC) for Flt3 with conventional immunostaining of cell type marker proteins revealed parvalbumin- and calbindin-positive Purkinje cells to be the main cell type expressing Flt3 in the cerebellum. To validate the versatility of the AP-IHC method for detecting low-abundance neuronal proteins, we demonstrated robust labeling of Kir2.1, a potassium channel protein, in brain tissue sections from mouse, pig, and human samples. We further applied the AP-IHC method to human stem cell-derived neurons, effectively visualizing the postsynaptic density scaffold protein PSD95 within synapses. To our knowledge, this is the first study to employ an AP-IHC method combined with other standard immunofluorescent staining to co-detect weakly expressed neuronal proteins and other cellular markers in brain tissue and cultured neurons. Additionally, our findings uncover a previously unrecognized neuron-specific pattern of Flt3 expression in the cerebellum, laying the foundation for future mechanistic studies on its role in normal brain development and neurological disorders.