Changes in the Proteomic Profile After Audiogenic Kindling in the Inferior Colliculus of the GASH/Sal Model of Epilepsy.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jerónimo Auzmendi, Carlos García-Peral, Alberto Lazarowski, Martín M Ledesma, Dolores E López, Laura Zeballos

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Switzerland : International journal of molecular sciences , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 705851

Epilepsy is a multifaceted neurological disorder characterized by recurrent seizures and associated with molecular and immune alterations in key brain regions. The GASH/Sal (Genetic Audiogenic Seizure Hamster, Salamanca), a genetic model for audiogenic epilepsy, provides a powerful tool to study seizure mechanisms and resistance in predisposed individuals. This study investigates the proteomic and immune responses triggered by audiogenic kindling in the inferior colliculus, comparing non-responder animals exhibiting reduced seizure severity following repeated stimulation versus GASH/Sal naïve hamsters. To assess auditory pathway functionality, Auditory Brainstem Responses (ABRs) were recorded, revealing reduced neuronal activity in the auditory nerve of non-responders, while central auditory processing remained unaffected. Cytokine profiling demonstrated increased levels of proinflammatory markers, including IL-1 alpha (Interleukin-1 alpha), IL-10 (Interleukin-10), and TGF-beta (Transforming Growth Factor beta), alongside decreased IGF-1 (Insulin-like Growth Factor 1) levels, highlighting systemic inflammation and its interplay with neuroprotection. Building on these findings, a proteomic analysis identified 159 differentially expressed proteins (DEPs). Additionally, bioinformatic approaches, including Gene Set Enrichment Analysis (GSEA) and Weighted Gene Co-expression Network Analysis (WGCNA), revealed disrupted pathways related to metabolic and inflammatory epileptic processes and a module potentially linked to a rise in the threshold of seizures, respectively. Differentially expressed genes, identified through bioinformatic and statistical analyses, were validated by RT-qPCR. This confirmed the upregulation of six genes (
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH