Enhancing the Quality of Indoor-Grown Basil Microgreens with Low-Dose UV-B or UV-C Light Supplementation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ilona Pacak, Ernest Skowron, Julia Szymkiewicz, Magdalena Trojak, Paulina Węzigowska

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: Switzerland : International journal of molecular sciences , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 705889

Controlled-environment crop production often weakens plants' defense mechanisms, reducing the accumulation of protective phytochemicals essential to human health. Our previous studies demonstrated that short-term supplementation of low-dose ultraviolet (UV) light to the red-green-blue (RGB) spectrum effectively boosts secondary metabolite (SM) synthesis and antioxidant capacity in lettuce. This study explored whether similar effects occur in basil cultivars by supplementing the RGB spectrum with ultraviolet B (UV-B, 311 nm) or ultraviolet C (UV-C, 254 nm) light shortly before harvest. Molecular analyses focused on UV-induced polyphenol synthesis, particularly chalcone synthase (CHS) level, and UV light perception via the UVR8 receptor. The impact of high-energy UV radiation on the photosynthetic apparatus (PA) was also monitored. The results showed that UV-B supplementation did not harm the PA, while UV-C significantly impaired photosynthesis and restricted plant growth and biomass accumulation. In green-leaf (Sweet Large, SL) basil, UV-B enhanced total antioxidant capacity (TAC), increasing polyphenolic secondary metabolites and ascorbic acid (AsA) levels. UV-C also stimulated phenolic compound accumulation in SL basil but had no positive effects in the purple-leaf (Dark Opal, DO) cultivar. Interestingly, while the UV-B treatment promoted UVR8 monomerization in both cultivars, the enhanced CHS level and concomitant SM synthesis were noted only for SL basil. In addition, UV-C also induced CHS activity and SM synthesis in SL basil but clearly in a UVR8-independeted manner. These findings underscore the potential of UV light supplementation for enhancing plant functional properties, highlighting species- and cultivar-specific effects without compromising photosynthetic performance.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH