Recent studies have shown that the metabolome of single embryo culture media is linked to successful pregnancy. In this study, the analysis was expanded to compare the metabolomes of viable and non-viable early-stage embryos and to examine metabolomic markers associated with hatching in viable embryos. The authors hypothesized that the metabolomic profiles of high-quality early blastocysts differ from those of non-viable embryos that reach the blastocyst stage but undergo developmental arrest at later stages. The metabolic profile of 43 spent bovine embryo culture medium samples were analyzed using liquid chromatography-mass spectrometry, covering 189 metabolites, including 40 acylcarnitines, 42 amino acids/biogenic amines, 91 phospholipids, 15 sphingolipids, and the sum of hexoses. Embryos were produced from abattoir-derived oocytes, and the culture medium samples were derived from Grade 1 early blastocysts that progressed to hatching (VBL
n = 10), non-viable early blastocysts that developed to the blastocyst stage but failed to hatch (DBL
n = 12), Grade 1 hatched blastocysts (HBL
n = 16), and plain growth media for control (CM
n = 5). It was observed that methionine sulfoxide (Met-SO) and lysophosphatidylcholine (lysoPC) C24:0 concentrations were significantly lower in the culture media from viable blastocysts compared to those from non-viable blastocysts (