OBJECTIVE: To conduct a systematic review on the mechanical properties of 3D printed resin-based composites when compared with those of subtractively manufactured resin-based composites. MATERIALS AND METHODS: In vitro studies comparing the mechanical properties of additively and subtractively manufactured resin-based composites were sought. A systematic search, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), was performed on four databases (PubMed, Embase, Web of Science, and Scopus) for articles published until 23 December 2024. The quality of the studies was assessed with the QUIN tool (risk-of-bias tool for assessing in vitro studies conducted in dentistry) and those assessed with a high risk of bias were excluded. RESULTS: Of the 1058 screened articles, 13 were included in this review. A noticeable heterogeneity emerged in the methodologies employed, mainly regarding samples' fabrication techniques, materials involved, and parameters analyzed. The most investigated mechanical property was fracture resistance, followed by microhardness, flexural strength, and wear behavior. Among the tested materials, the most used 3D printable resins were VarseoSmile Crown Plus (Bego) and Crowntec (Saremco Dental), whereas for the subtractive groups, the most investigated was Brilliant Crios (Coltène). CONCLUSIONS: The mechanical properties of 3D printed resins designed for permanent restorations are still lower than those of their subtractively manufactured counterparts. Moreover, in the long term, the degradation processes that inevitably occur might significantly increase their chances of failure.